Journal homepage: https://pcijournal.org/index.php/jmscowa

Journal of Mathematics and Scientific Computing with Applications

FORECASTING THE USE OF OKE JACK COMPANY'S ONLINE TRANSPORTATION IN MEDAN USING THE CHENG FUZZZY TIME SERIES METHOD

Dinda Sari¹, Sajaratud Dur², Fibri Rakhmawati³, Repina Anjelina ⁴

^{1,2,3}Department of Mathematics, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia ⁴Department of Computer Science, Universitas Hasanuddin, Makassar, Indonesia

Article Info

Article history:

Received 03 10, 2022 Revised 06 01, 2022 Accepted 06 20, 2022

Keywords:

Transportation, Forecasting, Fuzzy Time Series Cheng

ABSTRACT

Transportation is an activity to move goods or people from one place to another. At present, transportation is very much needed by all groups to carry out an activity. Along with the development of the times and with the development of the times and with the existence of an internet, now many enterpreneurs are opening a business such as online transportation. This study uses the Fuzzy Time Series Cheng method in his research to see how accurate the model is to predict the future period. The results of the research using the Fuzzy Time Series Cheng method on the five service features in the Oke Jack, it was found that some of these service features resulted in MAPE error values below 10%, which is the best measure.

This is an open access article under the <u>CC BY-SA</u> license.

Corresponding Author:

Dinda Sari, Department Of Mathematic, Universitas Islam Negeri Sumatera Utara Medan Email: dindachan308@uinsu.ac.id

1. INTRODUCTION

Online transportation is a transportation that can be used by all Indonesians, especially people in the city of Medan, by using an application located on a smartphone. Online transportation provides services between goods and people who will travel anywhere that can be delivered directly to the location without the need to approach the ojek base or no longer have to wait by the roadside to get a taxi or rickshaw. Online transportation also provides food orders that can be delivered directly to the location of the order without having to go to its place directly, because the fare has been determined on the application. Degan this change is widely utilized by entrepreneurs to start business competition in the online transportation business.

Online transportation in Indonesia such as Go-Jek, Grab, Oke Jack, Blue Bird and inDriver and others. This research specifically examines about Oke Jack who is in Medan. Oke Jack is a social enterprise that led the revolution of the motorcycle taxi industry. Oke Jack himself started his journey in 2015 and still only operates in Malang. And in the next year Oke Jack is growing to several major cities in Indonesia.

Through oke jack app, everyone can access various services ranging from transportation, food delivery, shopping, send delivery, to clean house and vehicle. Because Ok Jack is an application with a variety of solutions for each situation.Oke Jack itself started operating in the city of Medan since mid-2018, from other companies Oke Jack attracted fans by giving about 10% off for drivers and giving a lot of discounts to users of the Oke Jack app. Because of the increasing number of smartphoneusers, there are also increasing users of online transportation in the city of Medan. Therefore the author wants to do Online Transportation Usage Forecasting Company Oke Jack in Medan Using Fuzzy Time Series Cheng Method, in the section Oke Ride, Oke Car, Oke Food, Courier and Oke Shop in a company Oke Jack by using past data from users Oke Jack. Because online transportation is growing very rapidly, so it is interesting to research. researchers use fuzzy time series method because it will difuzzy the number of Users of Oke Jack in Medan. Therefore, researchers used Cheng's Fuzzy Time Series method to predict the number of Oke Jack users in Medan for some future periods.

2. RESEARCH METHODE

In performing this research procedure is also assisted by software such as MS. Excel. the following research plans conducted in this study are as follows:

1. Data Retrieval

Researchers will take secondary data that is data obtained directly from the company Oke Jack.

2. Data Processing

The data that has been obtained will be processed by the following stages of calculation:

- a. Forming a set of universes (U) that is, a set formed from the historical data available by determining the value of the D_{max} and D_{min}
- b. Interval formation by determining range values, calculating class intervals, calculating interval widths, and forming fuzzy sets by looking at the number of frequencies obtained.
- c. Form a new interval class by looking at the number of frequencies obtained and looking for the middle value of each interval class.
- 3. Forming FLR (Fuzzy Logic Relation) and the formation of FLRG (Fuzzy Logic Relation Group) to set the weighting on fuzzy time series cheng.
- 4. Create a weighting matrix from the FLR results obtained then normalize the weighting matrix.
- Calculate the forecasting value of cheng fuzzy time seriesmethod.
 Calculate the fuzzy time series chengerrorvalue, then analyze the accuracy value using mape formula

3. RESULT AND ANALYSIS

The data used by researchers is monthly data in the use of online transportation from okejack company in Oke Ride section from May 2018 to September 2020, therefore there are 29 observation data used by researchers in this study.

Year	Month	Oke Ride	Oke Courier	Oke Shop	Oke Food	Oke Car
	May	30	0	0	2	61
	June	90	1	1	3	49
	July	185	5	3	3	112
0010	August	80	12	1	3	61
2018	September	72	0	0	3	32
	October	38	10	1	4	20
	November	29	2	0	2	5
	December	15	0	0	0	0
	January	2	0	0	0	1
	February	64	1	0	2	2
	March	13	0	0	7	4
	April	18	1	0	0	2
	May	31	1	2	1	5
9010	June	31	1	2	1	5
2019	July	10	0	0	0	0
	August	116	7	1	6	0
	September	101	1	0	7	0
	October	71	1	0	4	1
	November	115	3	0	7	0
	December	87	3	1	4	0
	January	859	25	5	38	6
	February	8.219	226	23	117	52
	March	16.571	654	86	96	50
	April	5.675	339	56	50	17
2020	May	3.081	131	42	33	10
	June	12.084	570	54	76	114
	July	24.084	1.299	79	154	238
	August	31.183	1.463	141	207	409
	September	48.019	1.766	125	256	392

Table 1 User Data Ok Jack in Medan

Source: Oke Jack Medan Company

3.1 Formation of the Universe Set

The first step in the fuzzy time series method is to form a set of universes in which there are several partitions of the same interval length. The set of universes is formed from the available historical data, namely by defining the D_{max} and D_{min} or the highest data and lowest data. Here's how to define the set of universes.

$$U = D_{max}$$
; D_{mi}

 $U = D_{max}$; D_{min} With D_{max} is the highest data and D_{min} is the lowest data. On Oke Jack data especially in Oke Ride users, researchers get a value of $D_{max} = 48.019$ users and $D_{min} = 2$ users. This the universe set U =(2;48.019).

3.2 Interval Length Formation

The second step is to form a long interval, researchers use frequency distribution that has the following steps:

a. Calculating the Range

$$R = 48.019 - 2$$

 $R = 48.017$

The range value is obtained from the highest Oke Ride user data then subtracted with the lowest Oke Ride user data.

b. Calculating Class Intervals

In determining the number of class intervals, researchers used the Struges formula as follows:

$$K = 1 + 3,322 \log n$$

where the value **K** is the number of intervals and n is the number of time series data used, here is the result of the calculation of the number of intervals.

$$K = 1 + 3,322 \log 29$$

 $K = 5,858086149$

From the above results obtained a value of K of 5.86, the researcher rounded the result to 6. So the number of intervals that researchers use is as much as 6 intervals.

c. Calculating Interval Width

$$I = \frac{R}{K}$$
$$I = \frac{48.017}{6}$$

~

I = 8.002,833

For the width of the interval can be obtained from the value of the range above then shared with the following class intervals then obtained the interval width value of 8,002,833.

d. Fuzzy sets are formed by looking at different number of frequencies.

	Table 2. Frequency Density of User Data Okay Ride							
11.	Lower Limit	Upper Limit	Frequency	Number of	Sub Interval			
u_i	Lower Linne	Opper Linne	requency	Sub Intervals	Width			
u_1	2	8.004,833	23	4	2000,70825			
u_2	8.004,833	16.007,666	2	3	2667,611			
u_3	16.007,666	24.010,499	1	2	4001,4165			
u_4	24.010,499	32.013,332	2	3	2667,611			
u_5	32.013,332	40.016,165	0	1	8002,833			
u_6	40.016,165	48.019	1	2	4001,4175			

From table 2 above, it can be seen that there are a number of different frequencies. When viewed from theresults of the frequency at all intervals, there are 4 different frequencies, namely 23, 2, 1, and 0. So the first highest data frequency, which is 23, is divided into 4 equal intervals. Next, the second highest frequency of data is at frequency 2 divided into h-1, which is 3 equal intervals, the interval at the third highest frequency is at frequency 1 divided into h-2, which is 2 equal intervals. This is done up to an interval with a frequency of one.

Based on the results of the frequency distribution, there are 15 sub-intervals that will be the domain of the fuzzy set that is formed, so there are 15 fuzzy sets that will be formed in table 3.

The following is the result of determining linguistic values with new boundaries.

Table 3. Fuzzy Intervals Using Frequency Density									
A_i	A_i Lower Limit Upper Limit Lbr Sub Interval Middle Value (m_i)								
A_1	2	2002,70825	2000,70825	1002,354125					
A_2	2002,70825	4003,4165	2000,70825	3003,062375					
÷	:	:	:	:					
A_{14}	40016,165	44017,5825	4001,4175	42017					
A ₁₅	44017,5825	48019	4001,4175	46018					

3.3 Fuzzification User OkRide

In the following stages of fuzzification based on the intervals that have been obtained before, the fuzzification can be seen from the limitations of the interval values that have been formed before. Table 4. Fuzzification of Actual Data

Year	Month	Oke Ride	Fuzzification	Year	Month	Oke Ride	Fuzzification
	May	30	A_1		August	116	A_1
	June	90	A_1		September	101	A_1
	July	185	A_1	2019	October	71	A_1
2019	August	80	A_1		November	115	A_1
2018	September	72	A_1		December	87	A_1
	October	38	A_1		January	859	A_1
	November	29	A_1		February	8.219	A_5
	December	15	A_1		March	16.571	A_8
	January	2	A_1	2020	April	5.675	A_3
2010	February	64	A_1		May	3.081	A_2
2019	March	13	A_1		June	12.084	$\overline{A_6}$
	April	18	A_1		July	24.084	A_{10}

FORECASTING THE USE OF OKE JACK COMPANY'S ONLINE TRANSPORTATION IN MEDAN USING THE CHENG FUZZZY TIME SERIES METHOD

May	31	A_1	August	31.183	A_{12}
June	31	A_1	September	48.019	A_{15}^{12}
July	10	A_1			10

3.4 Fuzzy Logic Relationship (FLR) and Fuzzy Logical Relationship Group (FLRG)

The Next step is to establish Fuzzy Logic Relationship (FLR) by identifying the differences based on historical data that has been difuzzifikasikan before. FLR is formed based on user data atthe current statewith user data at a later time than the current time (next state). Table 5, Fuzzy Logic Relationship (FLR) Results

* *	37 1		ELY HOSIC ICI	auonsmp		, 	DI D
Year	Month	Fuzzification	FLR	Year	Month	Fuzzification	FLR
	May	A_1	-		August	A_1	$A_1 \rightarrow A_1$
	June	A_1	$A_1 \rightarrow A_1$		September	A_1	$A_1 \rightarrow A_1$
	July	A_1	$A_1 \rightarrow A_1$	2019	October	A_1	$A_1 \rightarrow A_1$
9018	August	A_1	$A_1 \rightarrow A_1$		November	A_1	$A_1 \rightarrow A_1$
2010	September	A_1	$A_1 \rightarrow A_1$		December	A_1	$A_1 \rightarrow A_1$
	October	A_1	$A_1 \rightarrow A_1$		January	A_1	$A_1 \rightarrow A_1$
	November	A_1	$A_1 \rightarrow A_1$		February	A_5	$A_1 \rightarrow A_5$
	December	A_1	$A_1 \rightarrow A_1$		March	A_8	$A_5 \rightarrow A_8$
	January	A_1	$A_1 \rightarrow A_1$		April	A_3	$A_8 \rightarrow A_3$
	February	A_1	$A_1 \rightarrow A_1$	2020	May	A_2	$A_3 \rightarrow A_2$
	March	A_1	$A_1 \rightarrow A_1$	2020	June	A_6	$A_2 \rightarrow A_6$
2019	April	A_1	$A_1 \rightarrow A_1$		July	A_{10}	$A_6 \rightarrow A_{10}$
	May	A_1	$A_1 \rightarrow A_1$		August	A_{12}	$A_{10} \to A_{12}$
	June	A_1	$A_1 \rightarrow A_1$		September	A_{15}	$A_{12} \to A_{15}$
	July	A_1	$A_1 \rightarrow A_1$				

After getting the FLR results, the next researcher will form a Fuzzy Logic Relationship Group (FLRG) based on the previous FLR results. If there is a fuzzy set that has a relationship or can predict more than one set, then the right side can be combined. Here are the results from FLRG on Oke Ride.

Ta	Tabel 6. FLRG Results from Oke Ride						
Grup	Current State	Next State					
Grup 1	A_1	$A_{1,}A_{5}$					
Grup 2	A_2	A_6					
Grup 3	A_3	A_2					
Grup 4	A_5	A_8					
Grup 5	A_6	A_{10}					
Grup 6	A_8	A_3					
Grup 7	A_{10}	A_{12}					
Grup 8	A_{12}	A_{15}					

3.5 Weighting

The difference between the method defined by Chen and the method defined by Cheng is the weighting of each fuzzyrelationship. The next step after flrg creation is complete is to see how many of the same relationships in flrg are then created into a transition matrix form and then normalized. For example, in Group 1 that contains fuzzyrelationship $A_1 \rightarrow A_1, A_5$. Therefore, from the fuzzy relationship it can be known that the value $A_1 \rightarrow A_1$ there are as many as 20, while the fuzzyrelationship $A_1 \rightarrow A_5$ there is as many as one. Therefore, based on the FLRG, weighting can be seen in Table 7 which is flrg weighting and Table 8 is a normalized weighting.

Table 7.	Weighting F	fuzzy for (Okay Rid	e Users
----------	-------------	-------------	----------	---------

		0	0	J = J		
W^*	A_1	A_2	A_3		<i>A</i> ₁₄	A_{15}
A_1	20	0	0		0	0
A_2	0	0	0		0	0
A_3	0	1	0		0	0

Journal of Mathematics and Scientific Computing with Applications

:	:	:	:	•.	:	:
A_{14}	0	0	0		0	0
A_{15}	0	0	0		0	0
		Table 8.	Normaliz	zed Weig	hting	
W^*	A_1	A_2	A_3		A ₁₄	A_{15}
A_1	²⁰ / ₂₁	0	0		0	0
A_2	0	0	0		0	0
A_3	0	1	0		0	0
:	:	:	:	•.	:	:
A_{14}	0	0	0		0	0
A_{15}	0	0	0		0	0

After getting the normalized weight from the two data above, then calculate the forecasting value in the next sub-chapte.

3.6 Calculating Forecasting Values

Here are the forecasting results from Oke Ride users using cheng fuzzy time series method.

$$F(1) = W_1^*(m_1) + W_5^*(m_5)$$

= $\frac{20}{21}(1002,354125) + \frac{1}{21}(9338,6385)$
= $\frac{20047,0825}{21} + \frac{9338,6385}{21}$
= $\frac{29385,721}{21}$
= $1399,32$

The following is the result of the calculation of forecasting on FLRG from Oke Ride using Cheng's weighting method and can be seen the results in table 9

_	Table	s on FLRG	
E:Ct.		Fuzzification	Forecasting
	Fuzzilication	Relationship	Results
	$A_1 \rightarrow$	A_{1}, A_{5}	1399,32
	$A_2 \rightarrow$	A_6	12006,24
	:	:	:
	$A_{14} \rightarrow$	Ø	42.017
	$A_{15} \rightarrow$	Ø	46.018

The forecast results from Oke Ride users from May 2018 to September 2020 can be seen in the next table, as follows:

Table 10. Okay Ride Forecasting Results							
Month	Oke Ride	Fuzzification	Forecasting Results				
May 2018	30	A_1					
June 2018	90	A_1	1399,32				
:	÷	:	:				
August 2020	31.183	A_{12}	30.680				
September 2020	48.019	A_{15}^{12}	46.018				

The forecasting on Cheng's Fuzzy Time Series method is seen from the previous fuzzification and put the forecasting results in the following month.

3.7 Calculating Cheng's Fuzzy Time Series Error Value

The next step is to calculate the error value to see how small the error value is to produce the best model of each type in Oke Jack. Because, if the model has a value to a smallerror has a small error, then the model can be used to predict the user Okay Jack of each type for a period to come. Here's the result of the error value.

Table 11. Error Value on Data Okay Ride				
Month	Oke Ride	Forecasting Results	$\left \frac{X_t - F_t}{X_t}\right $	
May 2018	30	-	-	
June 2018	90	1399,32	14,54788889	
July 2019	185	1399,32	6,563891892	
:	:	:	:	
August 2020	31.183	30.680	0,016130584	
September 2020	48.019	46.018	0,041671005	
	Total		1430.13227	

$$MAPE = \frac{\sum_{t=1}^{n} \left| \frac{X_t - F_t}{X_t} \right|}{n} \times 100\%$$

= $\frac{14,54788889 + 6,563837838 + 16,491375 + \dots + 0,041671005}{29} \times 100\%$
= $\frac{1430,12191}{29} \times 100\%$
= $49,31490586 \times 100\%$
= $49,31\%$

Based on the results above, the error value for Oke Ride users is 49.31%. Forecasting using the Fuzzy Time Series Cheng method has a pretty good forecasting value to predict Oke Ride service users on the Oke Jack application, because it has a MAPE value below 50%.

Furthermore, to get forecasts for Oke Ride users using Fuzzy Time Series Cheng for the next few months, it can be reprocessed by entering the data that has been obtained to predict the next months, it can be reprocessed by entering the data that has been obtained to predict the next month. Here are the forecast results for the next 20 months:

Table 12. Next Forecasting Result for Oke Ride			
Month	Forecasting Results		
October 2020	18159,20325		
November 2020	18994,19964		
:	:		
April 2022	33189,13813		
May 2022	34024,13451		

4. CONCLUSION

Conclusion Based on the results of the analysis and discussion that has been done about the forecasting about the use of online transportation on Oke Jack who is in Medan using the Fuzzy Time Series Cheng method, then the researchers came to the conclusion that, the results of forecasting by using Fuzzy Time Series Cheng on Oke Jack that is for some service features the method is very accurately used as in the oke shop service feature , Oke Food and Oke Car because it has a MAPE value below 10%, for courier service features are also still accurate because it has a MAPE value still below 20%, while for Oke Ride service is not accurately used because it has a MAPE value close to 50%. Here is a table of error values in the service feature OK Jack:

Table 13. Error	Value On Ser	vice Feature OK Jac.	k
-----------------	--------------	----------------------	---

Cheng	MAPE
Oke Ride	49,31%
Oke Courier	13,69%
Oke Shop	0,7%
Oke Food	1,25%
Oke Car	2,24%

5. **REFERENCES**

- [1] Adisasmita, S. A. 2011. Perencanaan Pembangunan Transportasi. Yogyakarta: Graha Ilmu.
- [2] Agustin, A. 2017. Persepsi Masyarakat Terhadap Penggunaan Transportasi Online (GOJEK) Di Surabaya. Jurnal Ilmu Riset dan Riset Manajemen. Vol. 6, No. 9.
- [3] Anisah, Mas'amatuz Zahra, Qurrotul Aini. 2019. Peramalan Penjualan Handphone Samsung dan Oppo Menggunakan Metode Fuzzy Time Series Cheng. Jurnal Unirow. Vol. 1, No. 2.
- [4] Asep Jamaludin. 2017. Peramalan Jumlah Pinjaman Menggunakan Metode Fuzzy Time Series Cheng. Jurnal Informatika. Vol. 6, No. 2.
- [5] Aswi, Sukarna. 2006. Analisis Deret Waktu (Teori Dan Aplikasi). Makasar: Andira Publisher.
- [6] Boaisha, S. M., Amaitik, S. M. 2010. Forecasting Based on Fuzzy Time Series Aproach. Proceeding ACIT. University of Gariyounis.
- [7] C. Jotin Khisty, B. Kent Lall. 2005. Dasar-Dasar Rekayasa Transportasi. Jakarta: Erlangga.
- [8] Cheng, C. H, Chen, T. L. 2008. Fuzzy Time Series Based on Adaptive Expectation Model for TAIEX forecasting. Expert System Application. Vol. 34. Hal. 1126-1132.
- [9] Fadhillah, A., Betizza, M., & Ritha, N. (2017). Perbandingan Model Chen Dan Model Cheng Pada Algoritma Fuzzy Time Series Untuk Prediksi Harga Bahan Pokok. Kepulauan Riau: Universitas Maritim Raja Ali Haji.
- [10] Fahmi, T., Sudarno, dan Wilandari, Y. 2013. Perbandingan Metode Eksponensial Tunggal Dan Fuzzy Time Series Untuk Memprediksi Indeks Harga Saham Gabungan. Jurnal Gaussian, 2, 137-146
- [11] Fauziah, L., Devianto, D., Maiyastri. 2019. Peramalan Beban Listrik Jangka Menengah di Wilayah Teluk Kuantan Dengan Menggunakan Metode Fuzzy Time Series Cheng. Jurnal Matematika UNAND. Vol. 8, No. 2.
- [12] Fathoni, M. Y. (2017). Implementasi Metode Fuzzy Time Series Cheng untuk prediksi Kosentrasi Gas NO2 Di Udara. Jurnal Sistem Informasi Bisnis, 7(1), 17.
- [13] Hansun, S. (2012). Peramalan data IHSG menggunakan fuzzy time series. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 6(2).
- [14] Hasan, I. 2002. Pokok-Pokok Materi Statistik 1. Jakarta: Bumi Aksara.
- [15] <u>https://okejek.id/about/</u> di akses pada tanggal 10 November 2020.
- [16] Kamaluddin, R. 2003. Ekonomi Trnasportasi. Jakarta: Ghalia Indonesia.
- [17] Kusumadewi, S., Purnomo, H. 2004. Aplikasi Logika Fuzzy Untuk Mendukung Keputusan. Yogyakarta: Graha Ilmu.
- [18] Makridakis, S., Wheelwright, S.C., and McGee, V.E., 1999. Metode Dan Aplikasi Peramalan, Edisi Kedua. Jakarta: Erlangga.
- [19] Muhammad, M. 2016. Sebaran dan Peramalan Mahasiswa Baru pendidikan Matematika Universitas Muhammadiyah Purwokerto Dengan Metode Time Invariant Fuzzy Time Series. Matematika Jurnal. Vol. 3, No. 2.
- [20] Nugroho, K. (2016). Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Infokam, 12(1).
- [21] Rachmawati, M., D., Anifah, L. 2019. Prediksi Curah Hujan Menggunakan Metode Average Based dan High Order Fuzzy Time Series di Bandar Udara Juanda. Journal Information Engineering and Educational Technology. Vol. 3, No. 1.
- [22] Rahmawati, Eka Pandu Cynthia, Krisni Suslowati. 2019. Metode Fuzzy Time Series Cheng dalam Memprediksi Jumlah Wisatawan di Provinsi Sumatera Barat. Journal Of EDUCATION. Vol. 1, No. 1.
- [23] Sumartini, Memi Nor Hayati, Sri Wahyuningsih. 2017. Peramalan Menggunakan Metode Fuzzy Time Series Cheng, Jurnal EKSPONENSIAL. Vol. 8, No. 1.
- [24] Sukarto, Haryono. 2006. Pemilihan Model Transportasi Di Dki Jakarta Dengan Analisis Kebijakan Menggunakan Proses Hirarki Analitik. Jurnal Teknik Sipil. Vol. 3, No.1.
- [25] Tauryawati, M. L., & Irawan, M. I. (2014). Perbandingan metode fuzzy time Series cheng dan metode box-jenkins untuk memprediksi IHSG. Jurnal Sains dan Seni ITS, 3(2), A34-A39.
- [26] Taylor III, Bernard W. 2011. Sains Manajemen. Jakarta: Salemba Empat.
- [27] Tjakranegara, S. 1996. Hukum Pengangkutan Barang dan Penumpang. Jakarta: Rineka Cipta
- [28] Wijaya, A. 2016. Aspek Hukum Bisnis Transportasi Jalan Online. Jakarta: Sinar Grafika